
26	 July/August 2009	 Published by the IEEE Computer Society� 0272-1716/09/$25.00 © 2009 IEEE

Virtual Populace

The Virtual Marathon:
Parallel Computing Supports
Crowd Simulations
Erdal Yilmaz, Veysi Isler, and Yasemin Yardimci Çetin ■ Middle East Technical University

A lthough crowds are a part of daily met-
ropolitan life, massive crowds typically
appear only at special events, such as

concerts, political rallies, or sporting events. A
marathon is one of the largest events, including

a huge population of runners as
well as many spectators. For ex-
ample, at the annual New York
City Marathon, nearly 40,000
runners participate, and one
million people watch them from
sidewalks.

Many other cities worldwide
also host well-known marathons.
Figure 1a shows a massive crowd
of runners on the Bosporus Bridge
in Istanbul during the Inter-
continental Istanbul Eurasia
Marathon. At this annual event,
thousands of people attempt an
intercontinental course between
Asia and Europe. This event, along

with the lack of crowd simulation studies related
to marathons, inspired us to investigate mara-
thon simulation. (For a look at related work in
crowd simulation, see the sidebar.) Figure 1b is a
screenshot from the resulting simulation, show-
ing thousands of virtual athletes running over the
Bosporus Bridge.

To achieve real-time, lifelike performance, such
a simulation requires effective use of hardware as
well as well-known computer graphics algorithms
such as LOD (level of detail) and frustum and
occlusion culling. To meet the real-time require-

ments, we used parallel processing on a GPU, em-
ploying CUDA (originally Compute Unified Device
Architecture). A GPU opens the door to more real-
ism and better frame rates because it absorbs the
calculation overload from a CPU. We also exploited
parallel processing to create characters with more
realistic behavior, through fuzzy logic. Using fuzzy
logic for crowd simulation isn’t new, but program-
ming a GPU with CUDA to perform millions of
fuzzy inferences in real time is.

CUDA
In 2007, Nvidia released its CUDA parallel-
processing architecture for next-generation GPUs,
letting programmers use C. CUDA introduces a
GPU as a coprocessor to meet the requirements of
power-demanding operations that a CPU couldn’t
handle, in addition to graphics and rendering
tasks. Because modern GPUs have many cores,
they offer large performance benefits for parallel
processing.

Recently, researchers demonstrated significantly
increased speedup after adapting existing CPU-
oriented algorithms to parallel processing with
CUDA. Lars Nyland and his colleagues achieved
50× speedup on an N-body simulation in which
every physical body interacts with the others.1 This
speedup occurred in a highly optimized CPU im-
plementation, which produced 200× speedup com-
pared to an average CPU implementation of the
same problem. Several other studies report similar
speedup in different domains.2,3 These promising
achievements encouraged us to use CUDA in our
marathon simulation.

To be realistic, an urban model
must include appropriate
numbers of pedestrians,
vehicles, and other dynamic
entities. Using a parallel-
computing architecture,
researchers simulated a
marathon with more than
a million participants. To
simulate participant behavior,
they used fuzzy logic on a
GPU to perform millions of
inferences in real time.

	 IEEE Computer Graphics and Applications� 27

Implementation
Our simulation involved more than one million
virtual people (32,768 runners and 1,015,808 spec-
tators). We also constructed a virtual city model
containing thousands of buildings and city furni-
ture models (traffic lights, street lamps, and so on).
To compile the simulation, we used Visual C++ and
CUDA. We used OpenGL graphics programming.
The simulation ran on a PC with an Intel Core 2
Quad CPU, 3 Gbytes of RAM, and an Nvidia Ge-
Force GTX280 GPU (1 Gbyte of video RAM and
240 stream processors). For higher screen resolu-
tion, we used a multimonitor setup connected with
a Matrox TripleHead2Go card. Three connected 19-
inch LCD monitors produced 3,840 × 1,024 pixel
resolution (see Figure 2a). An upper monitor served
as extra workspace and wasn’t used for rendering.
As Figure 2b shows, we can increase resolution fur-
ther by enhancing the multimonitor setup.

We used commercially available human models
with 4,000 to 6,000 polygons and high-resolution
texture maps. We used rigged models so that we
could animate them easily by using motion-capture
data. We applied different texture maps for human-
model variation. To create different body shapes, we
scaled each model along three axes (see Figure 3).
To increase rendering performance, we used four
LODs for all 3D models; each LOD had 50 per-
cent of the previous level’s detail. We produced the
LODs offline using Autodesk’s 3D Studio Max 8,
which has a polygon reduction feature that gener-
ates low-polygon instances. The polygon constructs
were imported to and manipulated within the sim-
ulation system.

Instead of polygonal models, we could have used
image-based (impostor—an impostor is a 2D image
produced by rendering a 3D complex object), point-
based, or hybrid rendering techniques for each
LOD. Using impostors would require additional
preprocessing to prepare texture maps for many
animation sequences from various view angles.
When the crowd depth is high, point-based ren-
dering lets you use low-detail representation for
far-away objects. However, the marathon scene’s
side view couldn’t benefit from the mesh reduction
because of lack of depth. Detailed study of LOD
techniques appear elsewhere.4

Application Workflow
Figure 4 shows the application workflow. The appli-
cation initialization step constructs the virtual city
model and assigns personal and physical values
to each individual. It also transfers fuzzy sets and
knowledge base data to the GPU for the virtual
people’s reasoning process (AI).

Next, the main simulation loop starts. The start
simulation step sets the view frustum parameters
and timers and updates several global variables.
This step’s average runtime doesn’t significantly
affect simulation loop time, so we don’t include
the details.

Efficient updating of the crowd is this study’s
most important part. The update individuals step

(a)

(b)

Figure 1. Marathon crowds: (a) a photo of a crowd of runners on
Istanbul’s Bosporus Bridge and (b) a screenshot of a virtual-marathon
simulation. Previous research on crowd simulation hasn’t dealt with
marathons. (Figure 1a source: Istanbul Metropolitan Municipality; used
with permission.)

28	 July/August 2009

Virtual Populace

refreshes all information for each virtual human,
even those outside the view frustum or far from
the virtual-camera center. This step performs all

operations on a GPU using CUDA. Parallel pro-
cessing and the GPU’s many cores produce huge
computational power, enough to update massive
crowds. During this step, virtual characters’ dy-
namic parameters such as position, direction,
speed, and current feelings transfer from the CPU
(host) to the GPU (device), together with view
frustum planes and camera positions. This step
handles each individual on a separate thread. De-
pending on the GPU configuration, thousands of
virtual humans can be processed in parallel.

The GPU’s first job is to calculate a processed en-
tity’s LOD and visibility by calculating the distance
between the character and camera position to de-
termine whether the entity is in the view frustum
(is visible). This task is one of the most common in
real-time computer graphics applications, including
crowd simulation. CUDA makes it trivial.

Next, AI processing determines agent behavior.
We describe this process in the next subsection.

Then, the navigation starts, and the system re-
positions the characters. We use predefined paths;
we haven’t yet implemented a path-finding algo-
rithm. Similarly, we haven’t implemented collision
prevention on the GPU. These are major consid-
erations for this research’s future. During navi-
gation, the system calculates current positions on
the basis of parameters such as speed and direc-
tion and updates these values if necessary. In each
simulation time step, the system calculates the
virtual characters’ vertical positioning (see Fig-
ure 5) to prevent the sink-or-raise problem, which
would cause virtual characters to be drawn below
or above the ground surface.

The LOD0 retouch step covers very limited colli-
sion detection performed on the CPU, which only
covers individuals close to the viewpoint. Our cur-
rent algorithm requires performing collision tests
between all characters inside specified spatial,
neighboring cells. In this step, the CPU can also
be used for computationally intensive exceptional
threads, which could cause a delay on the GPU
due to the GPU’s SIMT (single instruction, mul-
tiple threads) architecture.

Finally, the rendering step renders the virtual
characters in the view frustum. In this step, the
GPU handles the graphics API, not CUDA. After
rendering, the simulation loop restarts.

Depending on the scene’s complexity, we
achieved between 10 to 30 frames per second
(fps). When we simulated more than one million
humans, the average GPU update time was ap-
proximately 60 milliseconds. Rendering required
25 milliseconds for a scene with nearly 10,000
virtual humans (represented with 3D geometric

(a)

(b)

Figure 2. Multimonitor setups for the virtual marathon. (a) The basic
setup consisted of three connected 19-inch LCD monitors, which
produced 3,840 × 1,024 pixel resolution. (b) An enhanced multimonitor
setup provides increased resolution.

Figure 3. A close-up view of the runners. We achieve model variety by scaling
the models with random values and associating different texture maps
with the human characters.

	 IEEE Computer Graphics and Applications� 29

models). Other steps required approximately 1
millisecond. In such a case, one simulation loop
finished in approximately 85 milliseconds, which
corresponds to 11 to 12 fps.

Fuzzy Logic with CUDA
Fuzzy logic provided a way to make a decision
based on a membership value ranging from 0 to 1
rather than true or false. In this way, fuzzy logic
helped us produce distinct behaviors.

Our AI implementation updated each individ-
ual’s status without considering that individual’s
visibility. Each simulation loop involved sev-
eral millions of fuzzy logic inference operations,
thanks to the GPU’s parallel-processing capability.
We implemented fuzzy logic inference functions
from scratch because existing fuzzy logic libraries
aren’t designed for CUDA. When implementing
those functions on the GPU, we followed Penny
Baillie-de Byl’s work.5

The fuzzy logic inference updates individuals’
feelings or reasoning mechanisms and increases
the simulation’s realism. We can observe this in
how the virtual spectators react during the mara-
thon; they stand on sidewalks and cheer as runners
pass. The runners’ order and the spectators’ excite-
ment level determine the spectators’ cheering level
and style. For example, spectators cheer more for
front-line runners (see Figure 6). This inference
also evaluates spectator support for a specific run-
ner such as a friend or relative. After runners pass
by, spectators get bored and the inference output
changes dynamically. Similarly, runners decide
to increase or decrease their pace depending on
their goals, surrounding parameters, and physical
condition. Most inference inputs are dynamic and
might change during simulation. However, some
are fixed, such as each runner’s goal (to break a
course record, break a personal record, finish the
race, or have fun).

We implemented a four-step Mamdani-style
fuzzy inference: fuzzification, rule evaluation, ag-
gregation, and defuzzification.5 All the fuzzy sets
and rules (the knowledge base) are fixed and passed
from host to device during initialization. In each
simulation frame, the main CUDA kernel function
calls the evaluateRule function for each rule
in the fuzzy inference. This function produces a
new fuzzy subset. After rule evaluation, the union
of fuzzy subsets produces a new fuzzy set.5 Finally,
the main kernel function calls the getCentroid
function to compute a scalar value for modeling a
virtual character’s individual behavior.

For CUDA implementation, we use these fuzzy
inference functions:

Figure 5. Vertical positioning of characters. The GPU precisely calculates
the contact point between virtual people and roads or sidewalks.

Figure 6. Spectators cheer for the front-line runners. The simulation
determines spectator behavior individually via fuzzy inferences.

Application initialization

GPU (device): CUDACPU (host)

Start simulation

GPU: OpenGLCPU

Update individuals

GPU (device): CUDACPU (host)

LOD0 retouch

CPU (host)

Render

GPU: OpenGLCPU

Figure 4. The application workflow. The GPU provides rendering and
computation during different simulation steps.

30	 July/August 2009

Virtual Populace

getMembershipDegree■■ yields the degree of
membership in a fuzzy set. For computational
performance and simplicity, we used only linear-
fit functions.
evaluateRule■■ performs a fuzzy operation
on given fuzzy sets to compute a scalar value to
clip the output fuzzy set. We implemented only
fuzzy AND and fuzzy OR operations.
clipFuzzySet■■ makes a new fuzzy subset by
clipping the output fuzzy set.
aggregateFuzzySets■■ creates a new fuzzy
set by combining clipped fuzzy sets.
getCentroid■■ calculates the center of aggre-
gated fuzzy sets.

Figure 7 shows a simple CUDA kernel imple-
mentation workflow of a fuzzy knowledge base.

Instead of using fuzzy logic for behavioral mod-
eling, we could have used finite state machines
(FSMs). Isaac Rudomín and his colleagues used
GPUs to simulate agent behavior in crowd simula-
tion via FSMs that they implemented as fragment
shaders using GLSL (OpenGL Shading Language).6
Specifically, they used FSMs with texture maps as
easily accessible lookup tables. CUDA eliminates
the indirect use of shaders and texture maps and
provides a simpler coding environment than GLSL.
Fuzzy logic provides a higher degree of variety than
deterministic FSMs but requires more coding ef-
fort to implement.

For more variety, researchers have introduced
probabilistic FSMs.5 These constructs still involve
a finite number of states but determine transitions
between states according to given transition prob-

Here we look at two main research areas: rendering and
simulation with parallel processing.

Rendering Large Crowds
The number of virtual people in real-time applications has
increased significantly since the late 1990s, owing to enor-
mous improvements in graphics hardware, performance-
increasing graphics algorithms, and solution-oriented
rendering techniques. Although conservative frustum- and
occlusion-culling techniques and a low level of detail
(LOD) help decrease a rendering system’s load, they can’t
by themselves achieve interactive frame rates in massive
crowd simulation applications. Image-based rendering
techniques, which are a life jacket for crowded virtual
environments, simply represent virtual characters with
fewer polygons, mostly quads, instead of high-polygon 3D
models. By using this image-based approach and Nvidia’s
64-Mbyte GeForce GTS2 card, Franco Tecchia and his
colleagues visualized a village of 10,000 people at approxi-
mately 20 frames per second.1

Simon Dobbyn and his colleagues offered a novel hy-
brid rendering technique by using polygonal models and
impostors (an impostor is a 2D image produced by render-
ing a 3D complex object) derived from these models to
overcome degraded image quality at close viewing dis-
tances.2 They named their impostors geopostors because
their algorithm produces these impostors directly from
a 3D geometric model. This approach also helped them
overcome the pop-up problem that occurs when the com-
puter switches between model representations. If a notice-
able difference exists between these models (size, color,
animation phase, and so on), it might be perceptual.2 In
addition, they used several GPU facilities to increase visual
quality and virtual-actor variety. They demonstrated up
to 30,000 virtual people at interactive frame rates using a

GeForce 4 Ti4600 3D card with 128 Mbytes of memory.
In another study, Ladislav Kavan and his colleagues

minimized texture-memory consumption significantly
by introducing the polypostor, which is a multipolygon
impostor rather than a single quad.3 This structure still
represents a virtual character with few polygons and
uses a single, smaller texture map. This approach realizes
animation by changing vertex geometry. Not surprisingly,
it performs similarly to quad-based impostors because the
graphics pipeline can manage the number of polygons.
Using polypostors consisting of 90 polygons, Kavan and
his colleagues showed they could render up to 120,000
virtual people. However, the actual number of rendered
entities was lower owing to frustum and occlusion culling.

Erik Millán and Isaac Rudomín further increased the
number of virtual people by exploiting GPU processing
functionalities.4 They achieved interactive frame rates for
as many as 250,000 impostors and lower frame rates for
more than one million virtual people. They focused mainly
on crowd density, using simple navigation, animation, and
behavior models. Similarly to Dobbyn and his colleagues,
they employed 3D geometric models to visualize charac-
ters close to the viewpoint. To accelerate this process, they
applied pseudo-instancing, which uses a single API draw
call to improve rendering performance.

Parallel Computing and Virtual Crowds
The research we just described used simple models to
address behavior- and navigation-related issues. However,
the demand for realism involves not only lifelike graph-
ics but also artificial intelligence, smooth navigation, and
physical modeling. Lifelike real-time virtual environments
with massive crowds require more processing power than
a commodity PC can provide. Parallel computing might
help meet the requirements of computing-intensive opera-

Related Work in Crowd Simulation

	 IEEE Computer Graphics and Applications� 31

abilities. Fuzzy logic has no significant computa-
tional advantage over probabilistic FSM. However,
it enables an entity to be in multiple states at any
time and thus is more suitable for modeling com-
plex human behavior and interactions. We plan
to expand our research to include other dimen-
sions of city life. Fuzzy logic provides a natural

language for translating human experience into
a knowledge base for such complex environment
simulation.

CPU and GPU Comparison
We compared the CPU and GPU performance to
see GPU parallel processing’s potential for massive-

tions in crowd simulations. The approaches we report
in this section don’t benefit from basic load-minimizing
techniques such as frustum and occlusion culling or LOD.
They also handle every agent the same way, independent
of visibility or distance.

Michael Quinn and his colleagues accelerated the simu-
lation of pedestrian movement on the basis of a social-
powers model using a cluster of 11 personal computers
and an MPI (message passing interface) library.5 The
library is a software utility that handles parallel-processing
tasks, including data transfer between CPUs. To meet
real-time constraints, they used a PC cluster organized in
a manager-worker architecture. The manager PC handles
communication with the worker PCs. It collects each
individual’s current position after updating the cycle and
passes this information to the rendering engine. This ar-
chitecture minimizes network traffic by eliminating worker
intercommunication. Quinn and his colleagues observed a
linear performance increase when adding more PCs.

In a similar study, Anthony Steed and Roula Abou-
Haidar focused on dynamic allocation of regions for crowd
distribution, using spatial-partitioning algorithms.6 With
nonuniform distributions, parallel processing might not
work as intended, especially in real-time applications
where synchronization is a major issue. If crowd density
in similar-sized regions differs significantly, load-balancing
precautions are necessary.

Bo Zhou and Suiping Zhou partitioned flock simulation
on a PC cluster with MPI to simplify O(n2) complexity and
increase the number of entities.7 They examined different
network topologies and reported that near-neighbor com-
munication, in which a PC is connected only to PCs on either
side, is the best. They also demonstrated that dynamic load
balancing increases performance when used infrequently.

Finally, Craig Reynolds used parallel processing for fish

simulation on the PlayStation 3, which has one PowerPC
processor and seven Synergistic Processing Units.8 Reynolds
modeled crowds as interacting particle systems, with each
agent checking the rest for interaction (O(n2) complexity).
This approach was easy to implement with only a few virtual
actors but required more-advanced algorithms for more
than several thousand actors. To overcome this problem,
Reynolds used spatial hashing.

References
	 1.	 F. Tecchia et al., “Visualizing Crowds in Real-Time,” Proc.

Symp. Interactive 3D Graphics and Games, ACM Press, 2005,

pp. 95–102.

	 2.	 S. Dobbyn et al., “Geopostors: A Real-Time Geometry/

Imposter Crowd Rendering System,” Computer Graphics

Forum, vol. 21, no. 4, 2002, pp. 753–765.

	 3.	 L. Kavan et al., “Polypostors: 2D Polygonal Impostors for

3D Crowds,” Proc. Symp. Interactive 3D Graphics and Games,

ACM Press, 2008, pp. 149–155.

	 4.	 E. Millán and I. Rudomín, “Impostors, Pseudo-Instancing

and Image Maps for GPU Crowd Rendering,” Int’l J. Virtual

Reality, vol. 6, no. 1, 2007, pp. 35–44.

	 5.	 M.J. Quinn et al., “Parallel Implementation of the Social

Forces Model,” Proc. 2nd Int’l Conf. Pedestrian and Evacuation

Dynamics, School of Computing and Mathematical Sciences,

Univ. of Greenwich, 2003, pp. 63–74.

	 6.	 A. Steed and R. Abou-Haidar, “Partitioning Crowded Virtual

Environments,” Proc. Symp. Virtual Reality Software and Tech

nology, ACM Press, 2003, pp. 7–14.

	 7.	 B. Zhou and S. Zhou, “Parallel Simulation of Group Behaviors,”

Proc. 2004 Winter Simulation Conf., IEEE CS Press, 2004, pp.

364–370.

	 8.	 C. Reynolds, “Big Fast Crowds on PS3,” Proc. Siggraph Symp.

Videogames, ACM Press, 2006, pp. 113–121.

kernel (main CUDA kernel function)
	 For each fuzzy rule perform rule evaluation (call evaluateRule)
	 evaluateRule function
		 For each fuzzy set perform fuzzification (call getMembershipDegree)
		 Evaluate rule using fuzzy operator (AND/OR)
		 Make new fuzzy subset (call clipFuzzySet)
	 For each fuzzy subset perform aggregation (call aggregateFuzzySets)
	 Perform defuzzification (call getCentroid)
	 Set individual behavior

Figure 7.
A simple
CUDA kernel
implementation
workflow
of a fuzzy
knowledge
base. The
simulation
carries out AI
processing
using the given
functions in
parallel on the
GPU, on the
basis of CUDA.

32	 July/August 2009

Virtual Populace

crowd simulation. We used two models: the low-
cost model included one fuzzy inference, and the
high-cost model included four fuzzy inferences
and used a more precise frustum-culling approach.
Consequently, it required nearly five times more
computation. Table 1 shows the results.

For the high-cost model, the GPU calculated
virtual-character navigation and reasoning almost
100 times faster than the CPU (see Figure 8). The
GPU performed better as the number of entities
and computational cost increased. CPU processing
time was exactly linear, whereas there was no sig-
nificant change for the GPU owing to the natural
result of parallel processing. As Table 1 shows, the
GPU processing times for the two models aren’t
significantly different, despite a 5× computational
difference. This difference was due to data trans-
fer between the host and the device or vice versa.
Because data transfer costs much more than GPU
processing time, the computational difference of a
few hundred flops is negligible. This conclusion is
valid only for cases similar to our study.

One of the worst scenarios for parallel process-
ing of crowd simulations would be individuals
who require extremely expensive computation. To
see what happens when some people require more
computation than others, we identified 10 people
requiring 1,000 times more computation than the
rest of the crowd. This new scenario created no sig-
nificant difference for the CPU because it was the
same as adding 10,000 more people. On the GPU,

however, all the other threads had to wait for the
longest-running one, resulting in degraded perfor-
mance. With a small number of computationally
demanding people (such as 10 out of 32,768), the
GPU performed worse than the CPU. As this ratio
decreased (for example, 10 of 1,048,576), the delay
became negligible.

To achieve higher speedup, it’s important to
process a group of people with similar computa-
tional requirements in a single GPU warp. So, we
assigned 10 successive thread indices to the previ-
ously identified 10 people. As a result, GPU perfor-
mance increased significantly because we handled
those 10 individuals in a single warp. Depending
on the number of such entities, we could filter
them to minimize idle time on parallel-processing
resources. We could also process them using the
CPU. This test demonstrated the importance of
considering individual computational cost in the
simulation phase when entities are grouped. This
grouping becomes crucial if a significant difference
exists between the computational requirements of
individuals in the entire crowd, unless spending
resources on the classification task isn’t viable. In
light of these findings, we filtered the LOD0 people
(those close to the viewpoint) and performed their
collision detection on the CPU because the algo-
rithm required more processing power.

Results and Discussion
When using GPU parallel processing for crowd
simulation, we must minimize idle time to increase
effectiveness. The perfect case would be to have
exact multiples of GPU threads, with each thread
having the same computational cost. In this case,
all threads would complete tasks simultaneously
with no idle time. Recreating this case in crowd
simulations isn’t easy because various factors in
navigation (path finding and collision prevention)
and reasoning (individual AI and group and per-
sonal behavior) can cause different computation
times.

Another issue is the possibility of increasing
the frame rate by using more GPUs. Scaling in
multi-GPU applications is almost 100 percent. The
CUDA software development kit contains several
multi-GPU samples that demonstrate this scaling.
(However, Nvidia supports multi-GPU only on the
same cards.) Multi-GPU processing increases com-
putational power significantly. Currently, you can
connect eight CUDA devices on one PC board.

As we mentioned earlier, CUDA lets us program
GPU functionality in C. Recently, Qiming Hou
and his colleagues introduced the BSGP (Bulk-
Synchronous GPU Programming) language, which

Table 1. CPU and GPU processing times for updates.

Number of
people

Processing time (ms)

Low-cost model High-cost model

CPU GPU CPU GPU

32,768 46.25 3.10 198.11 3.16

65,536 90.64 4.32 394.39 4.36

131,072 179.36 8.59 786.24 8.76

262,144 356.48 15.52 1,573.16 15.60

524,288 711.28 30.89 3,119.36 31.29

1,048,576 1,420.64 59.86 6,282.52 61.20

Sp
ee

du
p

No. of virtual humans

32,768

120

100

80

60

40

20

0

65,536

131,072

262,144

524,288

1,048,576

Figure 8. GPU
speedup for
the high-cost
model. We
achieved nearly
100× speedup
on a GPU using
CUDA.

IEEE Computer Graphics and Applications 33

provides an easy coding environment for general-
purpose computations on a GPU as well.7 They re-
ported that BSGP performs comparably to CUDA
but requires less coding effort. CUDA’s increasing
popularity and the introduction of such new pro-
gramming environments simplifi es porting real-
time crowd simulations to a GPU.

For future research, our priority is to perform col-
lision detection on the GPU instead of the CPU.

Then, every operation regarding crowd simulation
would be on a GPU using CUDA. We’d also like to
add more GPUs and use three or four of these set-
ups to develop a hybrid parallel-processing system
comprising heterogeneous hardware with multiple
CPUs, GPUs, and monitors. Such a system should
possess enormous processing power. It should be
able to simulate and render more-complex scenes
with an exact marathon course, including start
and fi nish lines, refreshment stations, and entities
such as bikers, offi cials, and volunteers.

References
 1. L. Nyland et al., “Fast N-Body Simulation with

CUDA,” GPU Gems 3, Addison-Wesley, 2008, pp.
677–695.

 2. M. Silberstein et al., “Effi cient Computation of
Sum-Products on GPUs through Software-Managed
Cache,” Proc. 22nd Ann. Int’l Conf. Supercomputing
(SC 08), ACM Press, 2008, pp. 309–318.

 3. L. Howes and D. Thomas, “Effi cient Random
Number Generation and Application Using CUDA,”
GPU Gems 3, Addison-Wesley, 2008, pp. 805–830.

 4. E. Millan and I. Rudomin, “Impostors, Pseudo-
Instancing and Image Maps for GPU Crowd
Rendering,” Int’l J. Virtual Reality, vol. 6, no. 1, 2007,
pp. 35–44.

 5. P. Baillie-de Byl, Programming Believable Characters
for Computer Games, Charles River Media, 2004, pp.
212–230.

 6. I. Rudomín, E. Millán, and B. Hernández, “Fragment
Shaders for Agent Animation Using Finite State
Machines,” Simulation Modeling Practice and Theory,
vol. 13, no. 8, 2005, pp. 741–751.

 7. Q. Hou et al., “BSGP: Bulk-Synchronous GPU
Programming,” ACM Trans. Graphics, vol. 27, no. 3,
2008, article 19.

Erdal Yilmaz is a PhD candidate at Middle East Tech-
nical University’s Informatics Institute. His research
interests include computer graphics, video games, ar-
tifi cial intelligence, geographic information systems,
and their applications in the defense industry. Yilmaz

has an MSc in information systems from Middle East
Technical University’s Informatics Institute. Contact
him at erdal@ii.metu.edu.tr.

Veysi Isler is a faculty member in Middle East Techni-
cal University’s Department of Computer Engineer-
ing. He’s also the director of the university’s Modeling
and Simulation Research and Development Center.
His research interests include rendering, visualization,
game technology, and parallel rendering algorithms.
Isler has a PhD in computer engineering. Contact him
at veysi@metu.edu.tr.

Yasemin Yardimci Çetin is a professor at Middle
East Technical University’s Informatics Institute. Her
research interests include image registration, computer
graphics, and target detection. She’s the chair of the
IEEE Signal Processing Society and the interim chair
of the IEEE Aerospace and Electronic Systems Society
Chapters of Turkey. Çetin has a PhD in electrical en-
gineering from Vanderbilt University. Contact her at
yardimy@ii.metu.edu.tr.

Learn about computing history
and the people who shaped it.

COMPUTING
THEN

http://computingnow.
computer.org/ct

